(2a)^2/(3-2a)(3-a)=2

Simple and best practice solution for (2a)^2/(3-2a)(3-a)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2a)^2/(3-2a)(3-a)=2 equation:



(2a)^2/(3-2a)(3-a)=2
We move all terms to the left:
(2a)^2/(3-2a)(3-a)-(2)=0
Domain of the equation: (3-2a)(3-a)!=0
We move all terms containing a to the left, all other terms to the right
-2a)(3-a!=-3
a∈R
We add all the numbers together, and all the variables
2a^2/(-2a+3)(-1a+3)-2=0
We multiply parentheses ..
2a^2/(+2a^2-6a-3a+9)-2=0
We multiply all the terms by the denominator
2a^2-2*(+2a^2-6a-3a+9)=0
We multiply parentheses
2a^2-4a^2+12a+6a-18=0
We add all the numbers together, and all the variables
-2a^2+18a-18=0
a = -2; b = 18; c = -18;
Δ = b2-4ac
Δ = 182-4·(-2)·(-18)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{5}}{2*-2}=\frac{-18-6\sqrt{5}}{-4} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{5}}{2*-2}=\frac{-18+6\sqrt{5}}{-4} $

See similar equations:

| 2c+(3c-4)=-1c | | x2-8x=34 | | 2c+(3c4)=-4c | | 2x(3x+1)-28=0 | | 5/7t+2/3=19/21 | | 14x-19+9x+7=3x-2 | | 6=9w-3w | | 26 = r10 | | 11=5i-2 | | 40y^2-205y+25=0 | | r=70 | | 110 = 11 k | | 33=42-u | | 5/6(3/8-x)-16=0 | | 12x+14-11x=4 | | X+w=2.3 | | 2x+87=10x-17 | | 41=29+v | | 8=4g | | 3/8=v/13 | | 3=c+6/8 | | 5^2x+4=30 | | 3w–18=-39 | | 20-4q=16 | | 24=7x=45 | | 11–3y=-10 | | 26=34-y | | t-57/7=5 | | 2(r+4)-3(r+1)=11 | | 420-69=x | | 22^2+82x=32 | | 3z+11=8z-31 |

Equations solver categories